mlpack is a fast, flexible machine learning library that is written in C++ and built on the Armadillo linear algebra library and the ensmallen numerical optimization library. The project aims to provide fast, extensible implementations of cutting-edge machine learning algorithms to users using the C++ API, or via a number of popular languages (Python, Julia, R, Go) and the command-line interface (CLI).

USE CASES

Telecommunications and Astrophysics:
- **RLNN:** A software developed by NASA that uses mlpack to implement a cognitive communication engine. It aims to improve communications with satellites and the ISS. The software has been integrated with the space-ground system (SCaN) located at NASA Glenn Research Center.
- **AperC4:** An algorithm that uses mlpack to find galaxy clusters using non-parametric methods applied to catalogs of galaxies generated from multi-colour CCD observations.

Robotics / Biomedical:
- **MagicFlock:** A robotic framework dedicated to drone swarms that allows users to fly drones inside a simulator. It uses the mlpack library to provide predictive and reactive models for drones to achieve the swarming behavior.
- **iMOKA:** A biomedical software that uses mlpack to enable the analysis of sequencing data to generate robust classification models or explore specific genetic elements associated with disease etiology.
- **Vespucci:** An image analysis software that uses mlpack to perform data-processing operations, such as filtering, normalization, baseline correction. The software is capable of analyzing spectroscopic images, X-ray diffraction, in addition to surface-enhanced Raman spectroscopies.

PLANNED FEATURES

- Optimize mlpack for lightweight installation and deployment, reducing compile times and dependency overhead for use cases including embedded and low-resource applications.
- Provide initial GPU support for mlpack via the Bandicoot project: This will enable mlpack algorithms to train models on GPU machines and provide diverse deep learning functionalities.
- Improve the accessibility and discoverability of mlpack’s documentation and tutorials, to ease onboarding for new users.
- Add support and utilities for handling non-numeric data (image data, text data, etc.)

PROJECT STATISTICS:
- Github stars (3800+)
- Forks (1400+)
- Number of contributors (200+)
- Years active (13+)
- Citations (240+)
PROJECT NEEDS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Dev Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling initial GPU support</td>
<td>1 year</td>
</tr>
<tr>
<td>Technical writer / content creator</td>
<td>6 months</td>
</tr>
<tr>
<td>Revamping documentation</td>
<td>6 months</td>
</tr>
<tr>
<td>Integration support with other toolkits, languages, and environments</td>
<td>6 months</td>
</tr>
<tr>
<td>Optimize mlpack’s algorithms for speed and memory usage</td>
<td>1+ years</td>
</tr>
</tbody>
</table>

mlpack is a Sponsored Project of NumFOCUS, a US 501(c)(3) public charity.

NumFOCUS Sponsored Projects rely on the generous support of corporate sponsors, institutional partners, and individual donors.

For more information on mlpack, including our governance structure and project roadmap, please visit https://www.mlpack.org/

For more information: info@numfocus.org | +1 (512) 831-2870.